3.1093 \(\int (d x)^{3/2} (a+b x^2+c x^4)^{3/2} \, dx\)

Optimal. Leaf size=148 \[ \frac{2 a (d x)^{5/2} \sqrt{a+b x^2+c x^4} F_1\left (\frac{5}{4};-\frac{3}{2},-\frac{3}{2};\frac{9}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{5 d \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1}} \]

[Out]

(2*a*(d*x)^(5/2)*Sqrt[a + b*x^2 + c*x^4]*AppellF1[5/4, -3/2, -3/2, 9/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-
2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(5*d*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sq
rt[b^2 - 4*a*c])])

________________________________________________________________________________________

Rubi [A]  time = 0.127711, antiderivative size = 148, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {1141, 510} \[ \frac{2 a (d x)^{5/2} \sqrt{a+b x^2+c x^4} F_1\left (\frac{5}{4};-\frac{3}{2},-\frac{3}{2};\frac{9}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{5 d \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^(3/2)*(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(2*a*(d*x)^(5/2)*Sqrt[a + b*x^2 + c*x^4]*AppellF1[5/4, -3/2, -3/2, 9/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-
2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(5*d*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sq
rt[b^2 - 4*a*c])])

Rule 1141

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^2 +
 c*x^4)^FracPart[p])/((1 + (2*c*x^2)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^2)/(b - Rt[b^2 - 4*a*c,
 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c
]))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int (d x)^{3/2} \left (a+b x^2+c x^4\right )^{3/2} \, dx &=\frac{\left (a \sqrt{a+b x^2+c x^4}\right ) \int (d x)^{3/2} \left (1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}\right )^{3/2} \left (1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )^{3/2} \, dx}{\sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}}\\ &=\frac{2 a (d x)^{5/2} \sqrt{a+b x^2+c x^4} F_1\left (\frac{5}{4};-\frac{3}{2},-\frac{3}{2};\frac{9}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{5 d \sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}}\\ \end{align*}

Mathematica [B]  time = 0.856215, size = 459, normalized size = 3.1 \[ \frac{2 d \sqrt{d x} \left (4 x^2 \left (260 a^2 c^2-157 a b^2 c+21 b^4\right ) \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{5}{4};\frac{1}{2},\frac{1}{2};\frac{9}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )+5 \left (a^2 c \left (176 b+455 c x^2\right )+a \left (196 b^2 c x^2-28 b^3+916 b c^2 x^4+650 c^3 x^6\right )+305 b^2 c^2 x^6-8 b^3 c x^4-28 b^4 x^2+480 b c^3 x^8+195 c^4 x^{10}\right )+20 a b \left (7 b^2-44 a c\right ) \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{1}{4};\frac{1}{2},\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )\right )}{16575 c^2 \sqrt{a+b x^2+c x^4}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d*x)^(3/2)*(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(2*d*Sqrt[d*x]*(5*(-28*b^4*x^2 - 8*b^3*c*x^4 + 305*b^2*c^2*x^6 + 480*b*c^3*x^8 + 195*c^4*x^10 + a^2*c*(176*b +
 455*c*x^2) + a*(-28*b^3 + 196*b^2*c*x^2 + 916*b*c^2*x^4 + 650*c^3*x^6)) + 20*a*b*(7*b^2 - 44*a*c)*Sqrt[(b - S
qrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*
a*c])]*AppellF1[1/4, 1/2, 1/2, 5/4, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])] +
4*(21*b^4 - 157*a*b^2*c + 260*a^2*c^2)*x^2*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqr
t[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[5/4, 1/2, 1/2, 9/4, (-2*c*x^2)/(b + Sqrt
[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])]))/(16575*c^2*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [F]  time = 0.315, size = 0, normalized size = 0. \begin{align*} \int \left ( dx \right ) ^{{\frac{3}{2}}} \left ( c{x}^{4}+b{x}^{2}+a \right ) ^{{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x)

[Out]

int((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}} \left (d x\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)*(d*x)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (c d x^{5} + b d x^{3} + a d x\right )} \sqrt{c x^{4} + b x^{2} + a} \sqrt{d x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral((c*d*x^5 + b*d*x^3 + a*d*x)*sqrt(c*x^4 + b*x^2 + a)*sqrt(d*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d x\right )^{\frac{3}{2}} \left (a + b x^{2} + c x^{4}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**(3/2)*(c*x**4+b*x**2+a)**(3/2),x)

[Out]

Integral((d*x)**(3/2)*(a + b*x**2 + c*x**4)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}} \left (d x\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)*(d*x)^(3/2), x)